Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search
نویسندگان
چکیده
Researchers have applied deep neural networks to image restoration tasks, in which they proposed various network architectures, loss functions, and training methods. In particular, adversarial training, which is employed in recent studies, seems to be a key ingredient to success. In this paper, we show that simple convolutional autoencoders (CAEs) built upon only standard network components, i.e., convolutional layers and skip connections, can outperform the state-of-the-art methods which employ adversarial training and sophisticated loss functions. The secret is to employ an evolutionary algorithm to automatically search for good architectures. Training optimized CAEs by minimizing the `2 loss between reconstructed images and their ground truths using the ADAM optimizer is all we need. Our experimental results show that this approach achieves 27.8 dB peak signal to noise ratio (PSNR) on the CelebA dataset and 40.4 dB on the SVHN dataset, compared to 22.8 dB and 33.0 dB provided by the former state-of-the-art methods, respectively.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملThe effect of whitening transformation on pooling operations in convolutional autoencoders
Convolutional autoencoders (CAEs) are unsupervised feature extractors for high-resolution images. In the preprocessing step, whitening transformation has widely been adopted to remove redundancy by making adjacent pixels less correlated. Pooling is a biologically inspired operation to reduce the resolution of feature maps and achieve spatial invariance in convolutional neural networks. Conventi...
متن کاملLearning of Separable Filters by Stacked Fisher Convolutional Autoencoders
Learning of convolutional filters in deep neural networks proves high efficiency to provide sparse representations for the purpose of image recognition. The computational cost of these networks can be alleviated by focusing on separable filters to reduce the number of learning parameters. Autoencoders are a family of powerful deep networks to build scalable generative models for automatic featu...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018